EMMANUEL LAW

(o atbtmy ©) (oo

__CHRISTCHURCH

HACKER
CONFERENCE \

m 2016 4@

aurd

INFORMATION SECURITY

POWERED
BY KORDIA

* Principal Security Consultant @ Aura Info Sec
* Pentesting for living

* @libnex

* Found some PHP bugs...

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

I1aCker0ne About Product ¥ Resources ¥ Contact Directory Blog Try HackerOne

L 2L Lo o L e N O

Minimum Demonstrate the presence of a security
bug with probable remote exploitation potential. Hackers thanked (32)

The project maintainers have final decision on which issues constitute security vulnerabilities, Only issues that
are tagged as Type: Security by a project maintainer will be consider for bounty eligibility. The Panel will
respect their decision, and we ask that you do as well

It's important to keep in mind that not all submissions will qualify for a bounty, and that the decision to award
a bounty is entirely at the discretion of the Panel.

Submission Process

Disclose a previously unknown security vulnerability directly to the project maintaine
Follow the disclosure process established by the project maintainers.
Clearly demonstrate the security vulnerability. Respect the time of the project volunteers as they canno|

uaman
tation: 11

[

invest significant effort into incomplete reports. Low-quality reports may be disqualified. haq
Once a public security advisory has been issued, please submit a report here. You must not send us the Ref

details of the vulnerability until it has been validated, accepted, and publicly disclosed by the project
maintainers. All Hackers

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

,_____\

-

- s e s s

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

,_____\

\
I . Custom Strategies
| ° Find UniqBugs
[
[
. Time + Effort
\ /7 - Portability to other languages

- s e s s

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Off The Shelf

Pros
* Speed
e Power of the Open Source Community

Cons
* Less customization

* Competitionlots of them

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

- s e s s

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Battle Plan

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

What are we fuzzing?

e Attack Surface Area

Zend Engine

Unserialize Files Parser

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

BattlePlan : Attacking Files Parsers

* Examples: Zip, Images, Phar, PYZ
* Take the road less travelled
e Patch-out Checksum verification

ZIP Processor

Validate
Checksum

Process
ZIP

AURA INFORMATION SECURITY ©/ PRIVATE AND CONFIDENTIAL

BattlePlan: Fuzzing Corpus

A

e »
5678

Mutator Fuzzer

AURA INFORMATION SECURITY ©/ PRIVATE AND CONFIDENTIAL

BattlePlan: Fuzzing Corpus

* More Unique => Better chance of finding a crash
* Exercises as many code path as possible
* Harness Regression Test cases:

* Test edge cases

* Don’t forget test cases from sister projects

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Fuzzing

Choosing a Fuzzer

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Choosing a Fuzzer

e 101 Fuzzers out there
* Things to consider:
* Speed
e Popularity
* Easy of use
e Constrains: Source code?
e Buzz words: Evolutionary Fuzzing, In-memory
fuzzing

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Fuzzing: American Fuzzy Lop (AFL)

american fuzzy lop 1.74b (readelf)

days, 0 hrs, min, 24
days, 0 hrs, min, 59
days, 0 hrs, min, 17
days, 0 hrs, min, 23
0 (0.00
0 (0.00

)
)

arith 8/8
295k/326k (90.
552k

1114/sec

447/75.5k, 59/75.5k, 59/75.5k
7/9436, 0/5858, 6/5950

0/0, 0/6, 6/0

0/0, 0/0, 0/0

0/0, 0/6, 6/0

0/0, 0/0

0.00%/1166, 38.39%

3158 (4.82%)
2.56 bits/tuple

1 (0.12%)
318 (39.16%)

191 (10 unique)

2
812
1
811
n/a
0]

Gold Standard
EVERYONE is using this ®
Feedback driven

Feedback Driven/Evolutionary/Genetic Fuzzing

1X34 1X34
5678 5678
0BCD ABH#D

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Radamsa

* General Purpose Fuzzer
* Language/Data agnostic
* Semi-Smart

* Extremely easy to use

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Other Fuzzers

* honggfuzz

* Choronzon

e zzuf

* SO0 many many more..

Different Fuzzers will find different bugs

AURA INFORMATION SECURITY ©/ PRIVATE AND CONFIDENTIAL

Fuzzing: Getting better Mileage

e Address Sanitizer (aka ASAN):
 Compile into your interpreter
* Memory error detector
* Minimal overhead

AURA INFORMATION SECURITY ©/ PRIVATE AND CONFIDENTIAL

So you have found some crashes.....

AURA INFORMATION SECURITY ©/ PRIVATE AND CONFIDENTIAL

Triage

* Purpose
e Grouping of similar crashes
* Prioritize your crashes

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

e Comes free with Address Sanitizer

==5268==ERROR: AddressSanitizer: stack-buffer—overflow on address @x7ffffffe8f1® at pc @x7ffff551dleb bp Ox7ffffffe7ecod
WRITE of size 4996 at Ox7ffffffe8f1@ thread TO

#9 Ox7ffff551dlea (/usr/1lib/x86_64-1linux-gnu/libasan.so.1+dx2elea)

#1 0x9353ca in phar_set_inode /home/elaw/php-5.6.7/ext/phar/phar_internal.h:540

#2 0x941015 in phar_parse_zipfile /home/elaw/php-5.6.7/ext/phar/zip.c:638 E;t L(

#3 0x974a85 in phar_open_from_fp /home/elaw/php-5.6.7/ext/phar/phar.c:1703 ac

#4 0x9727fa in phar_create_or_parse_filename /home/elaw/php-5.6.7/ext/phar/phar.c:1346 1_FEE(ZEB

#5 0x9724da in phar_open_or_create_filename /home/elaw/php-5.6.7/ext/phar/phar.c:1315

#6 0x98c857 in zim_Phar___construct /home/elaw/php-5.6.7/ext/phar/phar_object.c:1189

Address @x7ffffffeBf10 is located in stack of thread T@ at offset 4128 in frame
#0 0x934185 in phar_set_inode /home/elaw/php-5.6.7/ext/phar/phar_internal.h:534

This frame has 1 object(s):
[32, 4128) 'tmp' <== Memory access at offset 4128 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)

SUMMARY: AddressSanitizer: stack-buffer-overflow ?77:0 77
Shadow bytes around the buggy address:

0x100071fFT5190: 00 00 00 00 00 00 00 00 00 00 00 00 00

0x10007fff5120: 00 00 00 00 00 00 00 00 00 00 00 00 00

0x10007ffT51b0: 00 00 00 00 00 00 00 00 00 00 00 00 00

0x10007fff51c0: 00 00 00 00

0x100071f51d0: 00 00 00 00

Triage: Exploitability

» lexploitable

gdb-peda$ exploitable

Description: Access violation near NULL on source operand

Short description: SourceAvNearNull (16/22)

Hash: d5dfd9cdde872c76db6b@d537c7e6T2f.132b523e45ed@a73c72}e7586141357e

Exploitability Classification: PROBABLY_NOT_EXPLOITABLE

Explanation: The target crashed on an access violation at n address matching the source operand of the current instruction. This likely i
may mean the application crashed on a simple NULL dereference to data structure that has no immediate effect on control of the processor.
Other tags: AccessViolation (21/22)

Triage: Test case minization

* Fuzzdiff, Afl-min etc
* Find the minimal changes that causes the crash

: Minized File
Original File Mutated File

AURA INFORMATION SECURITY ©/ PRIVATE AND CONFIDENTIAL

Root Cause Analysis = -

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Root Cause Analysis

* Trying the find the answers:
* What is causing the Crash
* |s it exploitable
* Very tedious and time consuming
« Remember you are competing on speed..

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Root Cause Analysis

* |spend a lot of time in GDB
 PEDA* is your friend

Breakpoint 1, 0x0000000000454810 in main ()

RSP: Ox7fffffffel30 —> Ox7fffffffe348 —> Ox7fffffffe6ld ("/home/elaw/php-7.0.0/sapi/cli/php_pure_00")
RIP: Oxbb4d3c (<main+24>: mov DWORD PTR [rbp-0x4],0x0)

R8 : 0x1476d40 —> Ox7ffffOf63c60 —> Ox0

RO : Ox7ffff7deae20 (<_dl_fini>: push rbp)

R10: Ox7fffffffedf0 —> 0x0 .
R11l: Ox7ffffObeda50 (<__libc_start_main>: push ri4) RegIS S

R12: 0x445670 (<_start>: xor ebp,ebp)

R13: Ox7fffffffe340 —> 0x2

R14: 0x0

R15: 0x0@

EFLAGS: 0x206 (carry PARITY adjust zero sign trap INTERRUPT direction overflow)

[code 1
Oxbb4d28 <main+4>:
Oxbb4d2f <main+1l>:

0xbb4d35 <main+17>:
=> @xbb4d3c <main+24>: mov DWORD [rbp-0x4],0x0 m
0xbb4d43 <main+31>: mov DWORD [rbp-0x8]1,0x0

PTR
PTR
O0xbb4d4a <main+38>: mov DWORD PTR [rbp-0xc],0x0
PTR
PTR

0xbb4d51 <main+45>: mov QWORD [rbp-0x50] ,0x0
0xbb4d59 <main+53>: mov DWORD [rbp-0x54] ,0x1
[stack 1
0000| Ox7fffffffel30 —> Ox7fffffffe348 —> Ox7fffffffe6ld ("/home/elaw/php-7.0.0/< 3pi/cli/php_pure_00")
0008| Ox7fffffffel38 —> Ox2f7fb59c8
0016| Ox7fffffffeldd —> Ox7fffffffe290 —> 0x0
0024| Ox7fffffffeld8 —> Ox7FFff7ffe500 —> Ox7Ffff7ffed60 —> Ox7FFff7fb5758 —> ¢ =of
0032| Ox7fffffffel50 —> Ox7fffffffe2b8 —> 0x0
0040| Ox7fffffffel58 —> Ox7ffff7ffela8 —> 0x0
0048| Ox7fffffffel60 —> Ox1
0056 | Ox7fffffffel68 —> Ox7Tfff7de577d (<_d1_lookup_symbol_x+349>: cmp edx;0x0)
[1

Legend: code, data, rodata, value

)

Breakpoint 1, main (argc=0x2, argv=0x7fffffffe348) at /home/elaw/php-7.0.0/sapi/cli/php_cli.c:1173
1173 int exit_status = SUCCESS;
gdb-pedas I

Root Cause Analysis

* Really? GDB?? pffft.. *scorn*

[breakpoints] [regs:general]

[backtrace]

"/private/tmp/inferior"

"/private/tmp/inferior"

"SSH_AUTH_SOCK=/private/tmp/com.apple.launchd.c4KQBTzeln/Listeners"

[stack]

The art of

Reverse Debugging b

Root Cause Analysis: Reverse Debugging

* Debugging tends to be very linear

AURA INFORMATION SECURITY © / PRIVATE AND CONFIDENTIAL

Root Cause Analysis: Reverse Debugging

* Record command in GDB
* Provides:
* Reverse Step
* Reverse Next
* Reverse Continue
* Revert to deterministic Memory State

AURA INFORMATION SECURITY ©/ PRIVATE AND CONFIDENTIAL

Lets

Make W on
Fuzzing Great o
Again

